

Testing Framework and Performance Results

Dr Christopher Jones CCE IOS 4 November 2020

Testing Framework Purpose

- Mimic the characteristics of a HEP data processing framework
 - Similar multi-threaded behavior
 - Similar I/O behavior
 - Should reasonably behave like CMS, ATLAS and DUNE frameworks
- Easily try different I/O implementations
 - Choose what to use via command line arguments
- Experiment agnostic
 - With ability to read actual experiment ROOT files
 - ROOT will dynamically load serialization/deserialization plugins as needed
- Make it easier to perform performance measurements
 - I/O performance

11/04/2020

threaded scaling performance

Review of ROOT

- ROOT is a C++ toolkit used in HEP
- Relevant parts of ROOT for CCE-IOS
 - A serialization mechanism for C++ objects
 - A file format to store the serialized objects
- ROOT output and concurrency
 - ROOT's file API allows only 1 thread to interact with a file at a time
 - Internally ROOT uses TBB tasks
 - Can compress different *Data Products* concurrently (serialization is still sequential)

HEP Framework Mimicry

- Only deals with processing of Events
- An Event is just a collection of Data Products

Data Product

- Can be any C++ type
- Each Data Product can be accessed independent of all other Data Products

Source

Mimics reading of Events

Outputer

Mimics writing of Events

Waiter

Mimics processing of Events

Processing Events

- Specify maximum number of threads to use
 - Use Intel's Threading Building Blocks to control threads
 - Used by CMS, ATLAS, DUNE and ROOT
- Asynchronous calls encapsulate work to be done into a Task
 - Task gets passed to TBB which runs the Task when a thread becomes available
 - When a Task finishes, it often makes another asynchronous call
- Specify the number of concurrent Events to use
 - Each Event has its own Lane
 - Lanes run concurrently

Lane

Handles processing of one Event at a time

- Processing order
 - Asynchronously requests new Event from framework
 - Request goes to Source
 - Makes an asynchronous request to get each Data Product
 - Request goes to Source
 - When get completes, start asynchronous wait request to the Waiter assigned to the **Data Product**
 - When Waiter finishes, asynchronously signal to Outputer that a Data Product is ready
 - Once Outputer is done with all data product, asynchronously signal Outputer the Event is *finish*ed

Output Performance Tests

Goal

- Use realistic CMS data file
 - CMS standard 'big' analysis format: AOD
 - ~500 kB/event
 - Created by standard Monte Carlo simulation procedure
- Measure thread scaling of writing data from that file
 - Write ROOT format
 - Using ROOT serialization concurrently without output
 - Write a simple format

Measurements

- Machine Used
 - AMD Opteron(tm) Processor 6128
 - 4 CPUs with 8 Cores per CPU => 32 Cores in node
- Testing procedure
 - Number of Events processed in a job is directly proportionally to number threads used
 - Exception is when jobs stop scaling with threads, then fix number events processed
 - Unless otherwise noted, number of concurrent Events == number of threads
 - Machine was always fully loaded
 - #threads per job * # concurrently running jobs == 32
- Read first 10 events from the file and replay objects over and over
 - No dependency on storage device read speeds on measurements
- No file actually written
 - Output goes to /dev/null
 - Avoids dependency on speed of storage device in measurement

Write ROOT File No Compression

- No scaling
 - This was expected as no IMT used

Write ROOT File With Compression

- Limited scaling
 - Not much concurrency in compressing data products

ROOT Object Serialization Only

- Good scaling till 24 threads
 - Scaling limit caused by a synchronization while serializing C++ objects

Simple Data Format

- Use ROOT C++ object serialization concurrently
 - Allow each serialized Event to be compressed concurrently

Conclusion

- Have a flexible I/O testing framework
 - Can test input and output formats and approximate HEP job timings
- Has lead to thread scaling performance of ROOT serialization
 - On second round of improvements
- Code can be found here
 - https://github.com/Dr15Jones/root_serialization

